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Three-dimensional boundary layer near the plane of 
symmetry of a spheroid at incidence 

By K. C .  WANG 
Research Institute for Advanced Studies, Baltimore, Maryland 

(Received 17 October 1969) 

This paper presents incompressible laminar boundary-layer results on both the 
leeside and windside of a prolate spheroid. The results are obtained by an im- 
plicit finite difference method of the Crank-Nicolson type. Particular attention 
has been given to the determination of separation and of embedded streamwise 
vortices. No restriction on the angle of attack or the thickness ratio is imposed, 
nor are there invoked any of the common assumptions such as similarity, conical 
flow and others. The results suggest an embedded vortex region existing between 
the regular boundary-layer region and the separated region. At higher angle of 
attack, the vortex region becomes so thick that it itself may be more appro- 
priately called ‘ separated’ also. The latter possibility leads to questions of 
applicability for existing theories on three-dimensional separation. 

1. Introduction 
The three-dimensional boundary layer near the plane of symmetry for the 

case of a supersonic cone at large angle of attack was first investigated by Moore 
(1952, 1953). On the windside, Moore’s solutions show the expected thinning 
of a boundary layer as the angle of attack is increased. On the leeside, numerical 
solutions were difficult to obtain. Asymptotic analysis indicated that unique 
solutions are limited to small angles of attack, and beyond a certain angle, the 
solutions do not exist at all. This clearly reflects the fact that the flow over a 
cone separates along a generator; beyond a certain angle of attack, the leeside 
of a symmetry plane lies completely inside the separated region and hence no 
boundary-layer solution can be expected. 

Moore further sketched without proof the formation of vortices which remain 
embedded inside a thin boundary layer (figure l ( a ) ) .  A t  still larger angle of 
attack, he depicted that the boundary layer exhibits a crosswise separation 
(figure 1 (b) )  on the leeside similar to the familiar flow pattern around a circular 
cylinder. 

Moore’s cone problem has later been extended to include heat transfer, mass 
transfer and other features, but consideration was invariably confined to the 
windside. Trella & Libby (1965) investigated some similar solutions near the sym- 
metry plane in the hypersonic limit. Otherwise little progress has been made 
with respect to the basic nature of especially the leeside flow of body shapes other 
than a cone at  large angle of attack. 
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In a related work, Nonweiler (1955) considered the boundary layer over a 
slender body of revolution at  small angle of attack. He separated the boundary 
layer into axial- and cross-flow parts, and carried out the cross-flow part only. 
The significance of such a cross-flow approach is naturally very limited. Never- 
theless, his calculations showing the embedded vortices are interesting. The 
embedded vortices were also implied in a work by Martin & Greber (1957) 
on the boundary layer over the cylindrical portion of slender bodies of revolu- 
tion at small angles of attack. Their method of approach, however, is subject 
to similar shortcomings to Nonweiler's. 

In  the present work, a finite-difference method is used to calculate exactly 
the boundary layer near the symmetry plane of a prolate spheroid. Both the 
angle of attack and the thickness ratio are arbitrary. This problem is chosen 
because (i) it is critically subject to the cross flow, (ii) the body shape is of con- 
siderable practical interest and (iii) the corresponding inviscid flow is exactly 
known. Numerical solutions have been obtained for both the windside and the 
leeside at  different angles of attack. Particular attention has been given to the 
determination of separation and of embedded streamwise vortices. In contrast 
to Moore's work, we have encountered no particular difficulty in obtaining the 
leeside solutions. The present results not only partially confirm the depiction 
shown in figures l(a),  ( b )  but provide further details of the flow structure. 
Although this work is limited to incompressible flow, it is otherwise free from all 
common restrictions such as conical properties, similarity, slender body, and 
small angle of attack. 

The symmetry-plane solutions obtained are of considerable interest for several 
reasons. They are exact solutions and relatively easy to obtain. They are the 
most important parts of the complete solutions over an entire body, and fre- 
quently are all one would need for practical purposes. Knowing these symmetry- 
plane solutions, a fairly clear picture of the complete flow immediately follows. 
Since these solutions are exact solutions, they can also be used to check other 
three-dimensionaI calculations. 

The boundary layer over a slender spheroid at small angle of attack was con- 
sidered by Eichelbrenner & Oudart (1955). They used the integral method plus 
the approximation of the independence principle. Since the point of interest and 
the method of approach are so different from those of the present work, little 
meaningful comparison can be made despite the fact that the body shape in both 
cases is a spheroid. 
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2. Formulation of the problem 
The inviscid solution 

A prolate spheroid (also known as the ovary spheroid) is an ellipsoid of revolution 
about the major axis of an ellipse. The inviscid flow potential over a prolate 
spheroid is known exactly (see Lamb 1932). For our present purpose, we need 
to be concerned only with the surface potential which may be put in terms of two 
surface co-ordinates p and 8 (figure 2). p ( -  1 < p < + 1)  is constant along the 
parallels and 8 is constant along the meridians. The corresponding metric 
coefficients h, and h, are given by 

h, = [( 1 - e2) (1  -p2)]* = r ,  (1b)  

where the eccentricity e = [1- (bz/a2)]+, (1 c )  

p=-1 

p=O 

FIGURE 2. Spheroid. 

2, w e=o 

a and b are the semi-major and semi-minor axes of the spheroid, T is the cross- 
sectional radius. With the free stream V,  at an angle of attack a (with the plane 
8 = go"), the non-dimensionalized (with respect to V,a) surface potential, 9, 
consists of an axial (along the major axis) part and a cross-part 

q5 = [( 1 + k,) (cos a)  p - @/a) ( 1 + kc) (sin a) (1 - p2)t cos 81, (2) 

where k, and kc are known as the axial and cross-coefficients of virtual mass and 
are defined by 

It follows from (2) that the non-dimensionalizecl surface pressure 

(1  + k,) (cos a)  [I -p2]4 + @/a) (1 + kc) (sin a) p cos 8 2 

[ 1 - e2p2]4 1 W - P d  = 1 - 

+[(1+kC)sinasin8l2 . (3) i 
Boundary-layer problem 

To study the boundary layer near the plane of symmetry, we continue to use the 
co-ordinates p, 8 plus the normal (to the body surface) co-ordinate z, but the 
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origin is located at the stagnation point p = p0. We denote by u, v, w the velocities 
along the p, 8 and z directions, and by U and V the inviscid velocities at  the 
edge of the boundary layer in the p and 8 directions. 

z is made dimensionless with a/R$, where R ( = V,a/u) is the Reynolds number, 
u the kinematic viscosity. u, v, U and V are non-dimensionalized with V,, w 
with V,/Rh, pressure p with p V L  where p is the density. 

At the plane of symmetry, 0 = 0 and n, one has 

v = avlap = avpz = a2v/az2 = v = a v p p  = 0, (4a) 

aupe = 0, appe = 0. (4b, c )  

With those quantities vanishing, the entire 0-momentum equation becomes 
identically zero, while the continuity and p-momentum equations take the form 

Equations (5a, b )  differ from those for axisymmetrical boundary layers only in 
the presence of (l /r)  av/ae which is not negligiblet compared to the other two 
terms in the continuity equation. av /M may be determined from an equation$ 
obtained by differentiating (see Moore 1953) the original &momentum, equation, 
i.e. 

Thus there are three equations for three unknowns, u, av/ae and w, with two 
independent variables, p and z. uis indirectly affected by 21 through w. In  contrast, 
u, v and w are mutually coupled in the full three-dimensional case. The pressure 
gradients are found from (3) 

where the sign implies that the plus is for 8 = 0 and the minus is for 8 = n and 

b ( l+kc)sina 
A = (-) 

a (l+k,)cosa (5f 1 

t This in fact is a strong point against the small cross-flow approximation. Along a 
streamline, even though the cross-velocity w is small, the cross-derivative of w is not 
necessarily small. 

$ The same can be arrived at by a perturbation procedure (Squire 1955). Let 

= uo+eul+ ..., 0 = ov,+ ..., w = W,+OW,+ ..., p = po+gezpl+ ...; 
then the equations for uo, v,, wo and p1 are just (5a ,  b ,  c ) .  
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The boundary conditions are 

where U and a V/a8 can be found from (2) 

1 
U =  + [( 1 + k,) (cos a)  [l --p2]* + @/a) (1 + kc) (sin a) p cos 81, ( 6 4  

P - e p l  
a V/a8 = (1 + k,) sin 01 cos 8. ( 6 e )  

The crosswise skin friction vanishes (since av/az = 0)  at the plane of symmetry, 
the total skin friction cf is therefore just the streamwise skin friction defined by 

Cf = shearingstress -=- (  1 au ) 
P Vz, R+ % eo' 

where R is the free-stream Reynolds number (V,a/v). 
General three-dimensional separation has not been undisputedly defined; but 

at the plane of symmetry, the separation point is usually determined by the 
vanishing of the streamwise skin friction, i.e. by ~ u f a z  -f 0 as z -+ 0. The 
significance of an analogous term, namely a(av/ad)/az --f 0 as z -+ 0, will be dis- 
cussed later. 

The outer edge of the boundary layer is determined by the condition of smooth 
transition of both u and avlat9 profiles, i.e. aulaz and a(av/M)/az = 0 as z -+ co. 

The displacement and momentum thicknesses in non-dimensionalized form 
are 

A* = som (1 -;) dz ,  

3. Difference method 
The type of problem 

of solution 
formulated in $ 2  has previously been solved for the 

similarity case or by series expansion. The similar solution is rather restrictive; 
the series solution has a limited range of validity and hence is not suitable to 
determine the separation point. We choose to obtain exact numerical solutions 
by a Crank-Nicolson type finite-difference method similar to those for two- 
dimensional and axisymmetrical cases (see, for example, Flugge-Lotz & Blottner 
1963). 

The boundary layer on the windside (8 = 0) or the leeside (8 = n) is resketched 
in figure 3. We divide the region of interest by a mesh and denote the location of 
a point by index 1 and n according to 

p = piui1Ap (I = O,1,2, ...), 

z = nAz (n = 0, 1,2, ..., N +  l), 



192 K .  C. Wang 

where p = pi is the initial-value line along which flow conditions are known, 
say, from the stagnation-point solution. N is a finite suitably-chosen number of 
divisions across the boundary layer. The problem becomes specifically to de- 
termine solutions a t  station 1 + 1 assuming the solutions at  station 1 are known. 
Each term of the differential equation is approximated by a difference quotient 
around a central point. 

z. n 

hPAP Body surface 

FIGURE 3. Difference mesh. 

Figure 4 (a)  shows the mesh for a single calculation of the momentum equations. 
Typical quotients are 

where (a2( ))Z+1,n = ( )z+1,n+1-2( )z+1,n+( )Z+l,?L-l* 

i i+i  

FIGURE 4. Mesh for a single calculation. (a )  For momentum equations. (b)  For continuity 
equation. 0 ,  solutions known; 0, solution to be calculated; 0, central point. 

With those quotients substituted into ( 5 b ,  c ) ,  one obtains two difference momen- 
tum equations 

(9a) 

a2n(8v/’0h+l,n-l+ b2n(avlWl+l,n +czn(’~/a0),+1,n+l= d2n, (9b)  

a lnu~+,n-l+ blnul+l,n +c ln~~1+1,n+l=  din, 

where the coefficients a,,, bln, . . . , a2n, . . . are given in appendix A. Equations 
(9  a, b) can be solved in the form of a tridiagonal matrix by well-known procedures 
(for example, Forsyth & Wasow 1960) to determine u and av/aO at  I +  1. 
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The continuity equation is used to determine w explicitly in both the z direction 
and p direction (figure 4 (b ) ) .  Furthermore, w is evaluated at  1 + Q instead of I + 1. 
The derivatives are approximated by 

Substituting into (5a) yields 

wl+g, n = wz+g,n-l- d3n, (104 

where d,, is given in appendix A. 
The iteration procedures are similar to those familiar for the two-dimensional 

case, and no detailed descriptions are necessary. Integration is stopped in the 
calculations whenever the successive values differ less than a half percent of the 
value of the preceding cycle. To evaluate the skin friction, the derivative au/az 
is approximated by a four-point Newton’s forward differentiation formula, i.e. 

To test the boundary-layer outer-edge condition of smooth transition, i.e. 
af/az = 0, we set 

I l f l+l ,N+ll  - Ifi+l,NIl < € 3  

where f is either ZL or avla8 and B is a prescribed small number. In  the present 
calculations, E is taken to be a half percent As ,u increases, the boundary 
layer grows thicker; one or more points in the z direction must be added at 
station 1 + 1 in order to ensure the smooth transition. Addition of too many 
points at  a particular p station indicates that Ap is too large. In  the present 
calculations, Ap is reduced whenever more than one point (in the z direction) 
needs to be added. 

The initial values needed for starting the present calculations were obtained 
by solving the three-dimensional stagnation-point boundary-layer equations of 
Howarth (1951) and Squire (1955). Application of their method to the present 
case is summarized in appendix B. 

Consistency of the present difference scheme follows from the condition that 
the truncation errors vanish with the step sizes. Linearized stability can be 
shown similar to that of the heat equation, and no instability difficulty has 
actually been experienced throughout the entire computation. Convergence is 
assessed from result, obtained by reducing the step sizes. 

4. Results 

different values of the angle of attack a. 
Numerical results have been obtained for the thickness ratio b/a = and 

13 FLM 43 
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FIWJE~E 5. (a)  u-velocity profile. -, present ( A p  = 0.0025, Az = 0.0816). Schlichting: 
0, 0"; f, 25"; 0, 50'; A, 75'; 0, 90"; 0 ,  100'; V, 109.6". ( b )  Skin friction. Present: 
+, maximum step size Ap = 0.01, Az = 0.0816; 0, 0.005, 0.0816; A, 0.0025, 0.0816; 
-, 0.001, 0.0408. 0, Smith & Clutter. 
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Test case, sphere 

The programme was first tested against some known results for a limiting case, 
sphere (a = 0 and b/a = 1) .  Figure 5 ( a )  shows the velocity profiles across the 
boundary layer compared with the series solutions according to best reading 
from figure 10-5 of Schlichting (1955). As expected, the series solution becomes 
poorer further downstream. Figure 5 ( b )  gives the skin friction along the surface. 
As the step sizes become finer, the results converge gradually. Smith & Clutter's 
(1963) results are shown for comparison. 

Windside results 

Shown in figures 6 (a)-( f )  are the boundary-layer results on the windside (6' = 0). 
Figures 6(a),  ( b )  give the inviscid velocity U and pressure p .  As the angle of 
attack increases, the u and p distribution become more asymmetrical. As far 
as the after-portion (0  6 ,u 6 1)  is concerned, such asymmetry is beneficial be- 
cause of the accelerating flow and favourable pressure gradient. Near the front 
end (,u = - l), asymmetry results in sharp variations of the U velocity and 
pressure. The latter leads to, among other things, rapid changes of u-velocity 
profiles and the skin friction as will be seen later. 

Figure 6 (c)  shows a few non-dimensionalized streamwise velocity profiles, 
u/ U ,  across the boundary layer. In  general these profiles are similar to those for 
two-dimensional cases. As expected, the boundary-layer thickness decreases as 
the angle of attack increases. This can be seen by comparing the outer edge x 
of the last p station shown for each value of a. 

Large changes of the u profile occur generally in two regions; one approaching 
the separation point, another near the front end. This can be seen, for example, 
from the fact that the profiles a t  ,u = 0.9286 and 0.9113 for the case a = 12" 
are so apart in proportion to the interval in ,u compared to the upstream results 
( p  < 0-9113). Such large change of u profile near the separation point is familiar, 
and the reason is the sharp increase of the boundary-layer thickness. But the 
same effect near the front end occurs for different reasons. It is due to rapid 
variations of the inviscid velocity and pressure; in fact the pressure gradient is 
favourable while the boundary-layer thickness grows very slowly. 

At still larger angle of attack (say, a = 31-87'), the profiles do not always go up 
in the arrow direction (figure 6 (c ) )  as ,u increases. Instead the profiles first follow 
such a trend up to, say, ,u = 0.2044; but then reverse until further downstream. 
This is why the profile for ,u = 0.2044 falls between those for p = 0.9544 and 
,u = 0.9871. This behaviour is connected to the downstream increase of the skin 
friction (figure 6 (e)). 

Figure 6 (d) gives the profiles of non-dimensionalized (av/aO)/(a VpO) across 
the boundary layer. Like the u-velocity profiles, the av/aO profiles also go up 
as ,u increases. Particular attention here is called to the S-shaped profiles which 
occur. Implications of such profiles will be explained later. For the axisymmetrical 
case (a = 0) ,  a v / N  is identical to zero. As a increases, S-shaped profiles gradually 
make their appearance just before separation. Further increase of a (say 12') 
moves the separation point farther downstream, and at the meantime decreases 

13-2 
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the size of the S-loop. For still larger angle of attack (a = 31.87") no separation 
ever occurs on the windside, and the S-shaped av/aO-profiles disappear. 

-1 

- 1.0 e - 

I I I I I -1.0 I I I I I 
-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 

P 
PICURE 6fa) and (5). b/a = 5, 19 = 0. 0, separation; n, start of vortex. 

(a) Inviscid velocity. (b )  Pressure. 

The skin-friction distributions are shown in figure 6 ( e ) .  These are quite 
different from the familiar ones for a flat plate or a sphere (see figure 5 (b ) ) .  For 
smaller angle of attack including a = 0, the skin friction increases sharply from 
zero at the stagnation point to a maximum value and then decreases gradually 
and monotonically to zero at  the separation point. For larger angle of attack 
(for example, a = 31-87'), the skin friction first rapidly increases and then levels 
off for most of the flow. Toward the rear end, the skin friction resumes its sharp 
increase until a maximum is reached and suddenly drops thereafter. 

Such variation of streamwise skin friction follows from the variation of u pro- 
file, particularly the part of the profile near the wall. For example, the increase of 
skin friction near the rear end (say 0.7 6 p < 0.95 for a = 31.87") is attributed 
to the fact that the u profiles there shift downward instead of upward as p 
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increases. Similarly the up-and-down behaviour of skin friction near the front 
end (for a between 0" and IS"), may be traced to the variation of u profile there. 
On the other hand, the variation of u profile is affected by the pressure. Hence once 
the pressure distribution is known, one can have a rough idea of the flow with the 
aid of typical existing solutions. 

I I I 1 I I I I 0 
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.'0 

P 
-0.4 

A *  1.n L 

01 I I I I I I I I I I 
-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 

P 
FIGURE G(e)  and (f) .  b/a = 2, 8 = 0. 0, separation; 0, start of vortex. 

( e )  Skin friction. (f) Displacement thickness. 

The point of vanishing skin friction is, by definition, the separation point. 
As the angle of attack increases, the separation point gradually moves down- 
stream as expected. In actual computation, the approach to the separation point 
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is accompanied by a small skin-friction value and extremely slow convergence 
of the iterations. 

Figure 6 (f) shows the displacement thickness. As expected, the integrated 
thickness becomes thinner as the angle of attack increases. When a is small or 
moderate, the monotonic increase of thickness is familiar. For large a (say 
3 1-87'), the displacement thickness decreases over a certain interval downstream. 
This does not indicate the decrease of the actual outer edge of the boundary 
layer. Rather this reflects the reverse trend of the u profile (figure 6(c)) which 
shifts downward instead of upward as p increases. 

Leeside results 
Results for the leeside (19 = 7 ~ )  are shown in figures 7(a)-( f ) .  As expected, the 
leeside boundary-layer thickness grows rapidly; many more steps are needed 

I I I I I I -1.0 I 1 I 1 I 
-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 

P 
FIGURE 7 ( a )  and (b) .  b/a = $, 8 = 7r. 0, separation; 0, start of vortex, 

(a)  Inviscid velocity. (b)  Pressure. 
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along both streamwise and normal directions in order to continue the integration. 
But otherwise there was no particular difficulty with the calculation. 

Figures 7 ( a ) ,  ( b )  give the inviscid velocity and pressure. In contrast to the 

A* 

I I I I I I I I I I 
-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 

/I 
FIGURE 7(e) and (f). b/a = &, B = 7r. 0, separation; 0, start of vortex. 

( e )  Skin friction. (f) Displacement thickness. 
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windside, a large angle of attack now causes the flow to decelerate and the pressure 
gradient to be adverse along the entire leeside. These unfavourable conditions 
completely change the flow character. 

For low angle of attack (say a = 6"), the u-velocity profiles (figure 7 ( c ) )  ex- 
hibit the same pattern as that prevailing on the windside. For larger angle of 
attack (say a > 12")) the u profile behaves differently. While the outer edge dis- 
tance increases rapidly in the downstream direction, the profiles remain nearly 
flat. Such nearly-flat u-velocity profiles lead to unusual features of the skin 
friction and displacement thickness to be shown later. The flow seems to become 
more like an inviscid uniform flow than a boundary layer, though near the front 
end (p = - 1)) the flow remains that of a thin boundary layer. 

The cross derivative aw/a0 also changes considerably (figure 7 (d) ) .  First of all, 
the S-shaped profile appears farther upstream even for relatively low angle of 
attach (say 3" and 6"). The higher the angle of attack is, the farther upstream 
such S-shaped profile emerges. Secondly, the loop region (note the scale difference 
compared with figure 6 (d ) )  becomes larger. In  the z direction, the loop extends 
to almost half of the boundary layer. A larger loop implies a larger embedded 
vortex as will be explained later. 

The skin-friction variations are shown in figure 7 (e). For all angles of attack, 
the skin friction increases sharply near the front end (p = - 1). After reaching 

maximum (see the enlarged plot) also near the front end, it decreases mono- 
tonically to zero for the cases of low angle of attack (say a = 3" or 6"). Such be- 
haviour is familiar on the windside. Increase of angle of attack, however, changes 
this pattern. The skin friction (for example, a = 31-87') then first drops rapidly 
to a minimum (near p = - 0.83) and then increases before it finally resumes its 
decline. The presence of a minimum follows from the u-velocity profiles in 
figure 7 (c) which shows that the profile for p = - 0.83 has the smallest gradient 
au/az. The general inter-relations among the skin friction, u profile and pressure 
discussed in connection with figure 6(e) hold here also. 

More unusual are the separation results. Normally one would expect that the 
separation point moves farther upstream as the angle of attack increases. This 
expectation is true only in the case of the starting of the vortex, but not for the 
separation. First, the separation point is found not to change much with the angle 
of attack. Secondly, the separation point moves upstream (relative to the separa- 
tion point for a = 0 )  at low angle of attack (say a < 8' for bla = 4) but reverses 
this trend to move downstream instead at  large angle of attack (say a > 8" for 
b/a = 4). This unusual behaviour is attributed, of course, to the downstream 
flow becoming less and less boundary-layer-like as the angle of attack increases. 

Figure 7 (f) gives the displacement thickness. What is unusual here is that the 
displacement thickness does not always increase monotonically in the down- 
stream direction except at  low angle of attack (say a = 3" - 6"). At larger angle 
of attack, the displacement thickness first goes up and then may go down de- 
spite the continuing rapid increase of the outer edge distance. This result follows 
from the fact that the integrated u-velocity defect does not increase with the 
increase of the outer edge distance, because the u-velocity profiles are nearly flat 
as shown in figure 7 (c). (Note that calculation for a = 31.87" has not been carried 
out to the separation point.) 
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5. Discussion 
Having presented the results obtained, we turn to elaborate some of the 

implications and consequences regarding the flow pattern and the question of 
separation. 

Xignijkance of the S-shaped av/a0 proJile 

From the derivative av/80 at the symmetry plane, one obtains the velocity v 
according to 

at some angle A0 off the symmetry plane. Thus the S-shaped profile of av/ae 
at the symmetry plane implies an S-shaped profile of v on both sides near the 
symmetry plane (figure 8). Such a profile suggests in turn the formation of 
streamwise vortices t inside the boundary layer in contrast to the crosswise 
vortices which are familiar in two-dimensional boundary layers. 

= A0(av/ao)sym. phne,  

Leeside of the 
symmetry plane 

FIGURE 8. S-shaped v-velocity profile. 

Analogous to the separation point determined by (au/az),,, = 0, the point 
which marks the beginning of the presence of an embedded vortex is determined 

Assuming that v depends continuously on z and 0 as it should for a smooth flow, 
one can exchange the order of differentiation 

Hence the vortex starting point on the symmetry plane may be further identified 
as the point (on the symmetry plane) at which the lateral derivative of the cross 
skin friction, Cfe, vanishes. Immediately ahead and after this point along the 
streamwise direction, a(Cfe)/aO takes opposite signs. The fact that the separation 
point and the vortex starting point are two distinct points has important impact 

t The idea of the formation of streamwise vortices is largely taken from the literature. 
Actually, whether such circulating vortices really exist and if so in what form (spiral?) 
remain to be proved. 
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on the current understanding of the flow pattern and the three-dimensional 
separation to be discussed later. 

The preceding results reveal that the embedded vortices are present on both 
the windside and leeside. On the windside, the vortex appears only in a short 
streamwise interval immediately ahead of the (streamwise) separation point; 
and it extends in the normal direction only a fraction of the whole boundary- 
layer thickness. On the leeside, the vortex appears much earlier in the stream- 
wise direction and may even extend over the entire leeside depending on the 
angle of attack. Meanwhile the leeside vortex may extend across the entire 
boundary-layer thickness. 

S 0 
S 

s 

(4 (4 
FIGURE 9. Flow pattern near the symmetry plane. A is the attachment point, S the 
separation point and R the vortex starting point. (a)  Present. ( b )  Maskell. (c) Low incidence. 
(d) High incidence. (c) and (d) Cooke & Brebner, also Eichelbrenner. 

Plow pattern 

On the basis of our present results, the flow pattern near the symmetry plane is 
sketched in figure 9 (a).  Let us just focus our discussion on the leeside. Adjacent 
to the symmetry plane, the direction of v velocity close to the body surface is 
reversed near the vortex starting point R, while the u-velocity direction remains 
unchanged until the separation point S. Consequently, the limiting streamline 
ahead of R is directed towards the symmetry plane, while that downstream of R 
is directed away from the symmetry plane. Behind the point S ,  since the u 
velocity close to the wall is also reversed, the limiting streamline points upstream 
and at  the same time away from the symmetry plane. 

Compared to the flow ahead of R, one may speak of the flow between R and S 
as partially reversed (i.e. v-velocity reversal only), while the flow behind X as 
completely reversed (i.e. both u and v velocity are reversed). 

The flow pattern just described differs from what has been described, for 
example, in the works of Maskell (1955)) Cooke & Brebner (1961) and Eichel- 
brenner (1  957). These authors sketched more complete limiting streamline 
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patterns over the body surface; the portions near the symmetry plane are re- 
sketched in figures 9(b), (c), (d )  for the purpose of comparison here. The main 
difference between the present work and those cited is the omission of the point R 
in the latter. Figure 9 (d)  for a 2 9" does imply reversal of v velocity ahead of X 
and hence seems to be in agreement with figure 9(a). However, figure 9(c) for 
a < 9" shows an opposite trend on the leeside which was not found in the present 
work. 

We have so far deliberately avoided any inferences regarding the flow farther 
away from the symmetry plane because the present solutions are invalid there. 
However, knowing the symmetry-plane solutions on both the windside and the 
leeside, one does gain a fairly good idea concerning the general flow trend over 
an entire body even though much of the detail is lacking. This is one of the reasons 
which makes such symmetry-plane calculations important. 

FIGURE 10, Sketch of general flow pattern. (a)  Low angle of attack. (b)  High angle of 
attack. 0, separation; 0, start of vortex; E- - -E, separation line for axisymmetrical 
case ; - - -, undeterminable by boundary-layer equations. 

In  the axially symmetrical case, the flow separates along a parallel (as shown 
by line EE in figures lO(a), (b) .  As the angle of attack increases, embedded 
vortices start to emerge. If we connect the vortex starting points and the separa- 
tion points on the wind- and leeside, the flow is divided; into: three] regions 
(figures lO(a), ( b ) ,  the regular boundary-layer region A ,  the embedded vortex 
region B and the separated region C. For later convenience of reference, let us 
refer to these connecting curves as the vortex starting line and the separation 
line respectively. The precise nature of these curves remains to be defined. But 
on the basis of our present results, there are two such curves which divide the 
boundary layer into three distinct regions. In  the literature including the works 
of Maskell (19531, Cooke & Brebner (1961), and Eichelbrenner (1957), the inter- 
mediate region B was not singled out. 
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Cross-sectional sketches (figure 10 ( c ) )  further illustrate gradual development of 
the boundary layer. Station (1) at the front shows a regular boundary layer all 
round, slightly thinner on the windside. At station (3), embedded vortices 
appear on the leeside, but the boundary layer remains thin and unseparated, 
at least, at low incidence. At  station (4) further down the stream, separation 
occurs at  the top. At station (6), separation becomes more pronounced and the 
embedded vortices extend to the bottom. Station (7) falls completely in the 
separated region. At stations (4) and (6), we have left the outer edge open on 
the top to indicate that the solutions there are beyond determination by 
boundary-layer theory. This does not necessarily imply an infinite wake behind. 

At low angle of attack, region B is thin and the vortex is embedded inside the 
boundary layer. At larger angle of attack, region B is not thin; the vortices grow 
to large size, and basic concepts for a thin boundary layer are however no longer 
valid. Furthermore , contrary to usual expectation, the separation point moves 
downstream instead of upstream. Under this circumstance, the ‘separation line ’ 
referred to so far seems to have lost its meaning. It would make more sense to 
redesignate the vortex starting line as the separation line. This raises a funda- 
mental question on how the three-dimensional separation should be defined. 

Perhaps a word of caution is in order at  this point. The present work follows 
strictly the classical boundary-layer theory with the pressure given by the 
inviscid solution, but this is known to be inaccurate when the boundary layer 
is not thin enough. The results, therefore, would be certainly somewhat modified 
if a more realistic pressure distribution, say from experiments, were used. 

Separation 

The definition of three-dimensional separation has long been an unsettled 
question (Brown & Stewartson 1969). There are several versions yet none seems 
to be undisputedly accepted. 

Maskell (1955), for example, sketched a bubble separation upon a body of 
revolution at incidence. He defined the envelope of limiting streamlines as the 
separation line with a singular point in the plane of symmetry. By singular, it 
is meant that the components of skin friction all vanish. This is the same defini- 
tion we have used for the separation point on the symmetry plane. On the other 
hand, Lighthill (1963) defined the separation line as ‘a skin friction line (or 
limiting streamline) which issues from both sides of a saddle point of separation 
and, after embracing the body, disappears into a nodal point of separation’. 
Referring to our present problem, the saddle point and nodal point of separation 
are just the separation points determined on the windside and leeside of the 
symmetry plane. Both Maskell and Lighthill , therefore, assert that the separation 
line passes through the separation points (based on the vanishing skin friction) 
on the symmetry plane, though they differ as to whether the separation line is 
the envelope of limiting streamlines or is itself also a limiting streamline. 

We cannot comment on their difference because this would require more 
complete solutions off the symmetry plane. But we disagree with their common 
assertion that the separation line passes through the singular points (S in 
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figure 9(a))  on the symmetry plane. Instead we maintain on the basis of our 
present results that at  larger angle of attack (say a > 8” for bla = t), the region B 
should be more appropriately referred to as ‘ separated’ and hence the separation 
would occur ahead of S. In this respect we also disagree with Cooke & Brebner 
(1961) and Eichelbrenner (1957). As shown in figure 9 (c), (d), these latter authors 
also show that the separation line passes through the singular points, S,  on the 
symmetry plane. 

At least near the symmetry plane, the separation, which we maintain occurs 
ahead of S, can be clearly identified as cross-flow separation (i.e. due to reversal 
of v velocity). For the type of flow considered, such cross-flow separation 
occurs much earlier than the streamwise separation which does not occur until 
the point S. Previous investigators seemed to have attached too much emphasis 
on the streamwise separation and hence have considered without exception (at 
least to the author’s knowledge) that the separation line passes through the 
points, S, on the symmetry plane. Actually the cross-flow separation is more 
intuitively obvious in the flow over an inclined body. In  fact the best known 
solution for this type of flow is the supersonic cone problem of Moore (1953) 
where the separation is entirely crosswise (i.e. in the circumferential direction). 

We have so far restricted our comments on the flow separation to near the 
symmetry plane and emphasized the phenomena of the cross-separation. Away 
from the symmetry plane, the terms ‘cross’ and ‘streamwise’ become vague, 
and the problem is beyond the scope of the present work. Before concluding, we 
may mention that Moore (1953) also suggested a different version of separation. 
He tried to identify the separation with the existence of a bubble of fluid em- 
bedded in the boundary layer. In  a qualitative way, this version of the separation 
line seems to  have some relevance with the starting vortex line referred to in the 
present work. However, it  is difficult at  this moment to demonstrate such 
relevance more clearly, since neither the vortex starting line used here nor 
Moore’s bubble edge is precisely defined despite such a bubble being physically 
easy to identify. 

The author is indebted to Dr S. H. Maslen for his discussions and to Mrs Barbara 
Hawkins for programming and obtaining the numerical solutions. 

Appendix A. Difference equations 
With the quotient approximations of (8a, b,  c), the difference form of ( 5 b )  

becomes (remembering all the coefficients of derivatives are evaluated a t  (1 + 8, n))  

alnUl+l,n-l+ blnul+l,n + ClnUI+l,n+l= din, (A 1)  

where 
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The difference form of (5 c )  becomes 

where 

The difference continuity equation from ( 1 0 ~ )  b )  and (5a)  is 

Appendix B. Initial values 
The initial values used for starting the present calculation were obtained from 

the stagnation point solution of Squire (1965).  Squire extended Howarth’s (1951) 
work on the stagnation-point boundary layer over a general curvilinear three- 
dimensional surface to include next higher order terms in the series expansion. 
Specialized to our present use, Squire’s solutions appear as: 

= bid(x) (hp)o(p-Po) + [bzzg j4 (Z)  + a i c z g ~ z ( z )  +a~dz!&(x)l  [(hp)o(P-Po)lz7 (B l )  

(B 2 ,  av/ae = (ho)o{aijh(z) [aiCzfL&) + aidzfL&) + bzz. fh4(5)]  (hp)o(P -Po)>) 

where (1 + Ic,)  sina 3 a, = ) x = U1X) 
( W O  
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The subscript zero indicates the quantities evaluated at the stagnation point. 
Functions fo and go are determined by Howarth’s equations (12-13)’ functions 
f Z i  and g3$ (i = 1,2 ,3)  are determined by Squire’s equation (45). Howarth and 
Squire solved these functions for a few cases; we have solved these functions for 
a number of specified values of the angle of attack a and the thickness ratio 
b/a = a. 
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